Drone-Assisted Energy

Delivery

Team 40

Team members & roles:

e Automation Specialists: Image processing:

Drew Underwood Abdullah Al Oabaidi
Garrett Lies e Landing/Charging Station:
Khalifa Al Dhaheri. Ahmed Al Hulayel.

Advisors: Randall Geiger & Degang Chen

The imminent demand of the IOT (Internet of
Things) Boom

Not all IOT Nodes can be expected to reliably
connect to the power grid

Cost to maintain connection to all nodes is
expensive

Use drones to deliver energy autonomously

Problem Statement

THE INTERNET OF THINGS

4 AN EXPLOSION OF CONNECTED POSSIBILITY

4N

TN ﬁ

38 BIllmN

s @)

it @
I @

24BN @
280K ‘D """" 3

" mumn @

4 @ o osoud O

vvvvvv

vvvvv

Requirements

For this project we have been tasked with

A fully autonomous solution for delivering energy by drone from one location to another, the drone
should take off, fly to the location, land, charge the device, and return home
A landing station to allow the drone to connect to the device being charged

— — 5% —

ity O

A B

Project Plan

e Two teams: Automation and Landing Station gy
e Research Drone —1 "
e Establishing a connection Discharging Charging

e landing Station

Create circuit

with magnetic
physical

connection

< : Desi d build
Program flying Program landing]eﬂ?n agnstaﬁon

® Automation

® Image Processing)
Sucessful power

Full Automation transfer

Drone Research

PHANTOM 3

STANDARD

Two choices - DJI and Intel Aero

e DJI: Least Expensive Option, included a 4K
camera, and library support. Hardware is not
flexible, updates depreciate code, must login
to DJI servers with a private key to use

e Intel Aero Ready to Fly: Customizable

hardware, several libraries. Small community,

lower level, no dedicated automation library

Ended up going with Intel Aero for flexibility

Establishing a Connection

Wire Connections using magnets:

Establish a connection using conducting magnets - similar to MacBooks

e Easier to design

e More efficient transfer
e Demands higher accuracy - harder to land

Old design

Connection with magnet | Connection with magnet I Latest design

|
4 </ i ?
e :

Most of testing done on LED for safety

New design

https://docs.google.com/file/d/1bKK95t6yaqjHxtwVVnBqrPPs0C3AbefI/preview

SolidWorks e

Landing Station Old/New

Image processing

Done in Python

® Greatly dependent on 3rd party library
OpenCv

e Filter Color and Size

Find location in x,y,z coordinates

Functions Used:

def create_mask(color, image) :

Create Color Mask

def find_centroid (mask, original, obj_width, focallength):
2. Find the Centroid of the Object

a. Filter for size

3. Using Triangular Similarity to find distances: def find_distance(fixed_width, focallength, per¥idth):
a. Focal length: (P x D)/W

b. Distance z: (W xF)/ P def find_pos_diff (cX, cY, dX, dY, focal_length, distance):

Distance x,y: (D x P)/F

Outputs:

Filtering noise

" vV ww > o o)

(x=393. v=14) ~ R:203 G:166 B:136

& = e T2 LR
(x=1.v=382) ~ R:232 G:169 B:112

Automation

e Compute Board communicates with flight controller by sending Mavlink messages
e Mavlink messages contain important information and commands for the drone to carry out

Overall implementation

Dynamically create waypoints

Take off and fly to general landing station location with GPS

Use image processing to guide the drone towards the landing station

Mimic movements towards landing station by creating and canceling waypoints

Land Drone on station, charge the device, and return home

Dronekit

High level library, easy to use and understand, documentation includes
examples

® Includes the implementation of many Mavlink Messages including, take

off and landing, GPS waypoints, velocity and position control, vehicle

state, gimbal and rotation control, and many more

Connect to the Vehicle.
print "Connecting"

[]
vehicle connect('tcp:127.0.0.1:5760"', wait_ready=False)
eS I I lg print "Connected"

Change to Guided mode

print "Changing mode to GUIDED"
PX4setMode (8)

time.sleep (1)

wl

#Arm motors
print "Arming motors:"

e Used an incremental approach to testing vehicle.armed = True
. . . while not vehic;e.armed:
e Started out with simple cases, arming and print "waiting for arming"

time.sleep(l)
disarming, take off and landing, etc

#Take off
H H #north, east, down, duration (in m/s)
e Wrote many tests to experiment with control et e D Bt e

print "Taking Off"
send_ned_velocity(3,3,-3,5)

without a GPS lock, had to test outside $rand

#try landing, fly downwards at 0.5m/s for 1 second
print "Landing"
send ned_velocity(3,3,3,5)

e Library restricted use of most commands

Example Shown is a velocity test to see if we could

. . . vehicle.armed = False
control the speed and direction of the vehicle # Close vehicle object before exiting script

vehicle.close()

print "Completed

Take off Stability Issues

Results

Completed

Arming and Disarming
Take off and landing with GPS (stability issues) Sometimes tests don’t end so well...
Movement between waypoints

Entire project implemented in code, just need
another month or two to fix stability issues

https://docs.google.com/file/d/1xrpeDIRWwRHAfid4W7uM1SU2z1NsK1mY/preview
https://docs.google.com/file/d/14KwD9OxTzjAPi_NmStVL5RZa5kzL550w/preview

Conclusion

We were able to successfully implement the requirements for the landing station and image

processing

e While we were not able to meet all requirements for the automation, we are confident we
could complete the project with a little bit more time, especially as the weather clears up

e Implemented a final solution to the automation requirement, better solutions will be available

as full support for Dronekit on PX4 becomes available

Questions?

